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Abstract

When segmenting images of low quality or with missing data, statistical prior information about the shapes of the
objects to be segmented can significantly aid the segmentation process. However, defining probability densities in the space
of shapes is an open and challenging problem. In this paper, we propose a nonparametric shape prior model for image
segmentation problems. In particular, given example training shapes, we estimate the underlying shape distribution by
extending a Parzen density estimator to the space of shapes. Such density estimates are expressed in terms of distances
between shapes, and we consider the L, distance between signed distance functions for shape density estimation, in
addition to a distance measure based on the template metric. In particular, we consider the case in which the space of
shapes is interpreted as a manifold embedded in a Hilbert space. We then incorporate the learned shape prior distribution
into a maximum a posteriori (MAP) estimation framework for segmentation. This results in an optimization problem,
which we solve using active contours. We demonstrate the effectiveness of the resulting algorithm in segmenting images
that involve low-quality data and occlusions. The proposed framework is especially powerful in handling ““multimodal”
shape densities.
© 2007 Published by Elsevier B.V.
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1. Introduction

We consider image segmentation problems that
involve limited and low-quality data. Such segmen-
tation problems are ill-posed and require the
incorporation of prior information about the
objects to be segmented. When human experts
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segment images, they clearly make use of such prior
information. For example, a radiologist can usually
manually segment an organ (e.g. the prostate) in a
magnetic resonance image, although the boundaries
are mostly invisible to a layperson. Clearly,
radiologists augment the observed data with their
expertise, in other words with statistical prior
information, about the shape of the organ. Existing
automatic segmentation methods (either explicitly
or implicitly) enforce only very simple constraints
about the underlying shapes. For example, many
active contour-based methods (which is the framework
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we also use in our work) involve a curve length
penalty [1-7], which translates to the assumption
that shorter curves are statistically more likely than
longer ones. However, in many applications, more
structured prior information about the shapes is
available. Yet the challenge is how to construct
probabilistic descriptions in the space of shapes, and
then incorporate such statistical information into
the segmentation process.

Early work on this problem involves landmark-
based representations of shapes, and the construc-
tion of typical shapes and typical variability based
on a set of training shapes via principal component
analysis (PCA) [8]. The use of landmarks has the
drawback that the performance of shape analysis
depends on the quality of those landmarks. Re-
cently, there has been increasing interest in using
level set-based representations for shape priors
[9,10], which avoid landmarks. In [9,10], PCA of
the signed distance functions of training data is used
to capture the variability of shapes. These techni-
ques have been applied to segmentation problems
involving low SNR or occluded images successfully,
especially when the shape variability is small.
However, there are two major shortcomings of such
techniques. First, these methods treat the signed
distance functions as elements of a linear vector
space, and perform operations such as averaging.
Yet, the space of signed distance functions is a
nonlinear manifold and is not closed under linear
operations. For example, the average of signed
distance functions, which is commonly used to
obtain a mean shape, is not necessarily a signed
distance function. Therefore, the use of linear
analysis tools such as PCA gives rise to an
inconsistent framework for shape modeling [10].
Second, these techniques can handle only unimodal,
Gaussian-like shape densities. In particular, these
methods cannot deal with “multimodal” shape
densities,which involve multiple classes of shapes
(e.g. a shape density of handwritten digits, com-
posed of multiple digits).

Besides the work that involves level set methods,
there has also been some other interesting work on
analysis of shape. Klassen and Srivastava et al. [11]
represent shapes by so-called direction functions
and define the space of shapes as a sub-manifold
embedded in the L, space of direction functions.
The key element in that work is the numerical
computation of a geodesic path on the shape space
connecting any two different shapes, where the
distance between two shapes is defined as the length

of the geodesic path. However, this method cannot
be easily extended to deal with 3D shapes. Minchor
and Mumford [12] also considered a space of curves
and obtained a numerical computation of a geodesic
path. Charpiat et al. [13] used an approximation of
the Hausdorff metric in order to make it differenti-
able and used a gradient of the approximate
Hausdorff metric to warp one shape into another
shape. Soatto and Yezzi [14] proposed a method of
extracting both the motion and the deformation of
moving deformable objects. In that work, they
propose the notion of shape average and motions
such that all the example shapes are obtained by
rigid transformation (motion) of the shape average
followed by diffeomorphism (deformation), where
the shape average and motions are defined such that
the total amount of deformation is minimized. In
that work, the amount of such diffeomorphism is
measured by a simple template metric, i.e. the area
of set-symmetric difference. There is also recent
work by Cootes et al. [15], which constructs a model
that obeys such diffeomorphic constraints.

In our work, we propose a framework for
constructing nonparametric shape densities from
example training shapes. In particular, we assume
that the training shapes are drawn from an
unknown shape distribution, and we estimate the
underlying shape distribution by extending a
Parzen density estimator to the space of shapes.
Such density estimates are expressed in terms of
distances between shapes. We propose two specific
distance metrics, namely the L, distance between
signed distance functions and the template metric
(which is the area of set symmetric difference
of two shape interiors), to be used for nonpara-
metric density estimation, although other metrics
could be used in our framework as well. We
then formulate the segmentation problem as max-
imum a posteriori (MAP) estimation, in which
we use the learned nonparametric shape density as
the prior. This leads to an optimization problem for
the segmenting curve, for which we develop and use
an active contour-based iterative algorithm. We
present experimental results of segmenting low-
quality and occluded images. We also demonstrate
how the proposed algorithm can successfully
incorporate shape densities involving multiple ob-
ject classes.

Recently Cremers et al. [16] also proposed a
nonparametric density estimation-based technique
for shape priors and demonstrated how the level set-
based segmentation can benefit from such shape
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priors. In particular, they considered a kernel
density estimate with the square root of the template
metric. They also incorporated the alignment with
respect to translation and scaling directly into the
first variation of their energy functional.

Our work and the work in [16] have been done in
parallel independently and share many common
aspects. Yet, our work is different from the work in
[16] in three major ways. First, we consider another
shape distance measure, namely the Euclidean (i.e.
L?2) distance between signed distance functions for
shape density estimation, in addition to a distance
measure based on the template metric which is
similar to the one used in [16]. We compare the two
kinds of metrics from both theoretical and practical
standpoints. Second, our framework can handle
alignment with respect to similarity transforms,
which consist of translation, scaling, and rotation.
Third, we further analyze the issue of density
estimation on the space of shapes. In particular,
we consider the case in which the space of shapes is
represented as a space of signed distance functions,
which we interpret as a manifold embedded in a
Hilbert space. We conjecture that the best metric for
density estimation in this case is a geodesic distance
and suggest a density estimate with L2 distance as a
good approximation of the density estimate with the
geodesic distance. We also provide a theoretical
comparison of our framework with that based on
PCA.

The remainder of this paper is organized as
follows. In Section 2, we motivate the problem of
building a shape prior and present nonparametric
shape priors based on the two shape distance
measures. In Section 3, we present our framework
for shape-based image segmentation, where we
derive the gradient flows for active contour evolu-
tion for maximizing shape priors. We then present
experimental results in Section 4 with a variety of
low quality images. Finally, we conclude in Section 5
with a summary.

2. Shape priors

Let us consider a segmentation problem. If the
image to be segmented is of high quality (defined
appropriately based on context), then the observed
image data provide a large amount of information
about the true boundary. However, in many
applications, this may not be the case. For example,
if the image is of low contrast, the amount of
information provided by the data will be small.

Similarly, if there are occlusions or missing data
around a portion of the boundary, the data
will not tell us much about that part of the
boundary. For such low-quality images, data alone
will not be sufficient for accurate segmentation.
Considering that segmentation is equivalent to
extracting the pose and the shape of the boundary
of the object, prior information on shapes will be
helpful in segmentation, if we have any such
information.

Now let us consider the case where we know the
category of the object in the image. If there is only
one possible fixed shape in that category, then we
know the exact shape of the object a priori, and the
segmentation problem comes down to estimation of
pose. However, in general, there is shape variation
even within a single category of objects, so that
there are considerably more (possibly a continuum
of) “candidate” shapes in the image than those
corresponding simply to variations in pose. For
example if the category is a particular organ in a
medical imaging application, there will be varia-
bility in the shape of the organ across patients. Since
such candidate shapes may not be equally likely, it is
desirable to have a quantitative measure of how
good a candidate shape is or how likely such a shape
is. In this sense, a probability measure on the set of
shapes of a given category is the desirable descrip-
tion of the prior knowledge about shapes of the
objects in the category.

Now the question is how to compute such a
probability measure on a set of shapes. An intuitive
idea is that a shape is more likely if it is similar to
the shapes of the same category seen before. This
raises the issue of how to define a notion of
similarity. Mathematically, this suggests that a
measure of distance between two shapes will play
an important role in statistical analysis of shapes. In
the following section, we state more formally the
problem of building shape priors from available
example shapes.

2.1. Problem of building a shape prior

In typical active contour-based image segmenta-
tion, a curve length penalty term ocfc ds for the
segmenting curve C is often used for regularization.
The basic idea behind this is that shorter curves are
more likely as a boundary of an object than longer
ones. Such a regularization term can be considered
as a prior term, more accurately, the negative
logarithm of a prior density. This interpretation is
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motivated by the Bayesian interpretation of the
energy functional E(C) for image segmentation.

E(C) = —logp(data|C) — logp(C) x —log p(C|data).
(1

In this respect, the curve length term corresponds to

the prior density for the curve p(C) o L

If we have more information about the shape of the
object to segment, we can build a more sophisticated
shape prior and use it to guide the evolution of the
curve C. In particular, we are interested in the case
where we have a set of example shapes of the object
class. Suppose that the example shapes are given in
terms of n curves Cy,...,C, that delineate the
boundaries of the example shapes. The basic idea
we use is that a candidate segmenting curve C will be
more likely if it is similar to the example curves. In
order to measure similarity between curves, we need
to compare the candidate curve C with the example
curves. However, when the candidate C and the
training curves Ci,...,C, are not aligned, a direct
comparison of C with Cy,...,C, will include not
only the shape difference but also artifacts due to
pose difference such as translation, rotation, and
scaling. In order to deal with this pose issue, we align
the curves Cy,...,C, and C into C,...,C, and C,
which have the same pose. In this paper, we denote
the aligned curves with tildes, whereas we denote
the candidate curve C without a tilde. Hence, the
procedure of estimating p-(C) consists of the
following steps:

(1) Align Cy,...,Cyinto Cy,..., C,. (Section 2.2.1).

(2) Align Cw.r.t. Cy,...,C, into C. (Section 2.2.2).

(3) Estimate p@(C') the prior probability density of
C given Ci...,C,. (Section 2.3).

(4) Relate ﬁ@(é) to pc(C). (Section 2.3.4).

Our approach can incorporate any available align-
ment algorithms in steps 1-2. Also we can use a
variety of distance metrics in step 3. Hence, this
framework can provide several variations of algo-
rithms depending on the choice of the alignment
algorithm and the distance metric. We now discuss
each of the above steps. Steps 2—4 are used in the
segmentation algorithm to be described in Section 3.

'We are focusing on 2D segmentation problems here although
our approach can be directly applied to 3D problems.

2.2. Alignment

2.2.1. Alignment of training curves by similarity
transforms

Here we discuss how to align the » training curves
Ci,...,Cy,. In particular, we use the alignment
algorithm presented in Tsai et al. [10], in which a
similarity transform is applied to each curve such
that the transformed curves are well aligned. Let us
first define the similarity transform and then provide
a criterion for alignment.

The similarity transformation 7[p] with the pose
parameter p=[a b 0 h] consists of translation
M(a,b), rotation R(A), and scaling H(h), and it
maps a point (x,y) € %> to T[p] (x,y) as follows:

X X
T[p]( ) — R(0) o H(h) o M(a, b)( ) 2)
y y

cosf) —sinf h(x + a) ;
<sin(9 cos@)(h()"i‘b)). ©
We define the transformed curve 7[p]C to be the
new curve that is obtained by applying the
transformation to every point on the curve. The
shape represented by a curve C can also be
represented by a binary image /(x,y) whose value
is 1 inside C and 0 outside C. The transformation of
I(x,y) is defined to be the new image obtained by
moving every pixel (x,y) of the image [ to a new
position 7[p](x, y) making the intensity of I at pixel
T[p](x, y) the same as the intensity of I at pixel (x, y)
as illustrated in Fig. 1. Thus the two images I and
T2 T[p)I are related by

I(x,y) = I(T[p](x,y)) for all (x,y) € Q. 4)

Equivalently, I can be written in terms of I as
follows:

1(x,y) = I(T"[p](x, »)). Q)
I I=T[pl1
() Tlp)(z,9)

I(,y) = (T[p)(=,y))

Fig. 1. Illustration of the similarity transformation 7'[p]/.
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We now provide a criterion for alignment. Given n
training curves, we obtain aligned curves Ci,...,C,
by a similarity transformation C;= T [p;]C; with
pose estimate p; for each i. The pose estimates are
chosen such that they minimize an energy functional
for alignment. The energy functional we use is given
by

Ealign(pla DY pn)

_ [ Jo(Tlp " — TlpF)* dxdy
ZZ{IIQ(T ' + TIp 1) dxdy [’ ©)

i=1 j#i

where I’ is a binary map whose value is 1 inside C;
and 0 outside C;, and T[p]I' is a transformed binary
map whose value is 1 inside 7[p;]C; and 0 outside
T[p,]C;. Asin (5), I "and TI[p,]I; are related by

Tlp ' (x, ) = I'(T ' [p(x, »)). ()

The numerator in (6), which is the area of set-
symmetric difference between two interior regions
of T[p,]JC; and T[p;]C;, basically measures the
amount of mismatch between T[p,]I' and T [p/]I/
and the denominator is present to prevent all the
binary images from shrinking to improve the cost
function. The double summation in (6) implies that
we compare every pair of the binary maps in the
training database.

To estimate the pose parameters, we fix the pose
parameter for the first curve as the one for the

identity transform and compute p,,...,p, by

P2, Pu} = argprr}{n Eatign(P15- - > Pw)lp,=(0 0 0 175
()

where we use gradient descent to compute p,, ..., Pp,.

2.2.2. Alignment of the candidate curve

Now we consider the problem of aligning the
candidate curve C w.r.t. the n aligned training
curves Cy,...,C,. To this end, we estimate a pose
parameter p such that C = T[p]C is well aligned to
Ci,...,C, by minimizing the energy

p = argmin E(p)
3

= argmmZ{fQ(T o = 1)’ dx} 9)

Jo(TIPI + T Y dx

where I and ' are binary maps whose values are 1
inside and 0 outside C and T[p,]C;, respectively.

2.3. Estimating the shape density

Now the problem is to estimate how likely the
curve C is, given the training curves Cy,...,C,. We
assume that the n aligned curves are i.i.d. according
to a density px(-) and estimate the density ps(-)
from n i.i.d. samples.

2.3.1. Nonparametric density estimation

Let us first consider density estimation for a finite
dimensional random vector. Suppose that we have n
samples xi,x2,...,x, € Z" drawn from an m-
dimensional density function p(x). The Parzen
density estimate is given by

1 n
) = k= %, 2), (10)
i=1

where we use an m-dimensional Gaussian kernel
k(x,X) = N(x;0, 2TX). If the kernel is spherical, i.e.
2 = al, the above density estimate becomes

1 n
px) == k(d(x,xi).0), (11)
i=1

where d(x, x;) is the Euclidean distance between x
and x; in £, and k(x, o) is the 1D Gaussian kernel
k(x,0) = N(x;0,c?).

Given a distance measure d¢(-,-) in €, the space
of curves, we can extend this Parzen density
estimator with a spherical Gaussian kernel to the
infinite dimensional space % as follows:

he(€) = Zk(d@(c C),0). (12)

In this density estimate, the composite of the 1D
kernel and the distance metric plays the role of an
infinite dimensional kernel. For the kernel size o, we
use an ML kernel size with leave-one-out [17]

oML = argmnglogﬁ@(C’,-) (13)

Z k(do(Ci, C)), 0).

= argmax Z log
‘ i /;él

(14)

Our nonparametric shape priors in (12) can be used
with a variety of distance metrics. In the following
sections, we consider two specific metrics, namely
the template metric and the L, distance between
signed distance functions.
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2.3.2. Parzen density estimate with the template
metric

We now consider the Parzen density estimate in
(12) with a specific metric, namely the template
metric  d1(C, C;) = Area(R, 4. ¢ ARipgige ¢,) (18],
where A denotes set symmetric difference. The
density estimate with the template metric is given by

pe(C) = Zk(dT(c Ci). o). (15)

We can also use square root of the template metric
as a distance measure and have the following
density estimate:

pe(C) = Zk<mo> (16)

Cremers et al. [16] use this density estimate for
shape-based image segmentation. As we will see in
Section 3.2, the template metric can also be
expressed in terms of level set functions and the
Heaviside function,” and as a result it has a practical
merit that the gradient flows C for the above two
density estimates are given in closed form.

One drawback of the template metric and its
variants is that they can miss a significant shape
difference or difference in topology if the area of
difference is small. For instance, the template metric
may not be able to distinguish a circle from a circle
with a thin blob attached or a circle from a
doughnut with a very small hole inside.

From the theoretical standpoint, the property
that the template metric is insensitive to this kind of
shape differences suggests that the geometry of the
shape space defined by the template metric is not
very appropriate for defining shape density, which
we explain now. When one defines a shape
probability density, the shape density at a specific
shape C' is related to the probability of the random
shape being inside a small neighborhood of the
shape C' as follows:

pe(CHvolume(N,(CT)) = Prob(C € N.(CT), (17)

where N,(C") = {C|d(C, C")<z¢} is a neighborhood
of CT with radius &. This ‘density’ will make sense
only if we can make sure that all the shapes inside
the small neighborhood N,(C") will look similar to
human observer. The template metric and its
variants do not satisfy this condition.

2We can also interpret the template metric and the square root
of the template metric as L; and L, norms on differences between
binary maps, respectively.

Despite the shortcomings mentioned above, in
practice, the template metric provides a viable
solution for the shape density estimation and
shape-based segmentation. We discuss the nature
of the gradient flow derived from the template
metric-based shape prior and the segmentation
results in Sections 3.4 and 4.

2.3.3. Parzen density estimate on the space of signed
distance functions

In this section, we consider another way of
defining a metric between two curves based on level
set representation of curves. In particular, we
represent each curve C; by its corresponding signed
distance function ¢C,~’ where we use the sign
convention of ¢ <0 nside the curve and ¢>0
outside the curve. The magnitude of signed distance
function (;’)g(x) is the distance from the point x to
the curve C;, and the magnitude grows as the point
is more inside/outside of the boundary curve. In
other words, we put more weight on points which
we are confident are inside/outside the object. Now
we can define the distance between two curves C
and C; as the distance between the two correspond-
ing signed distance functions ¢ and ¢, as follows:

d(C,C) = da(des de,)s (18)

where we let 2 denote the space of signed distance
functions and d4(-,-) denote the metric in space Z.
The issue here is how to define a distance metric
dg(-,-) in the space of signed distance functions.

We interpret the space of signed distance func-
tions & as a subset of an infinite dimensional
Hilbert space® %, which is defined by
L E(P|P: Q — R}, with the following inner pro-
duct and L, distance:

(b1, b) = /Q $1 ()b () d, (19)

dry(d1,$2) = V(1 — 2. b1 — $5). (20)

As the inner product is an integral over the image
domain €, the inner product and its induced L,
norm depend on the image domain Q. However, this
does not cause problems in practice, as we can
assume that the image domain Q is fixed over the

3As the space of signed distance functions is embedded in the
space of level set functions {¢|¢ : @ — £}, defining the geometry
of this bigger space automatically determines the distance for the
smaller space &. There are many candidate geometries for this
bigger space, and we choose to interpret the space of the level set
functions as a Hilbert space.
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D = {¢|¢ is a s.d.f.}

Fig. 2. Illustration of the space of signed distance functions &
and the geodesic path (solid line) between ¢; and ¢, compared
with the shortest path in Hilbert space ¥ (dashed line) which is
off the space 2.

entire segmentation process. Another issue is that
this distance is not invariant with respect to
translation and rotation. As we mentioned before,
we first remove differences due to pose variation by
alignment. Hence, the shape prior we propose does
not require such invariance properties.

Since the space & is embedded in a Hilbert space,
a natural metric do (¢, ¢,) for this space will be a
minimum geodesic distance, i.e. the distance of the
shortest path from ¢, to ¢, lying in the signed
distance function space %. Fig. 2 provides a
conceptual picture of the space &, and the geodesic
path connecting two distance functions ¢, and ¢,.
The direct line (dashed line) connecting ¢; and ¢,
gives a shortest path in the Hilbert space and its
length corresponds to the L, distance dp, (¢, ¢5).

If one could compute the minimum geodesic
distances dgeodesic(+, ), the corresponding Parzen
density estimate would be

s
pe(€) == kldgeodesic(§ - b,). ). (1)

We conjecture that the geodesic distance is the best
metric for the density estimation and that this
density estimate is inherently concentrated on the
shape manifold even with finite number of samples.*
The expected property that the density estimate is

4Cremers et al. [16] also interpret the shape space as a nonlinear
manifold, and mention that asymptotically the kernel density
estimate (with the square root of the template metric) becomes
concentrated on the manifold. This asymptotic behavior will be
true of many distance metrics, but with finite samples the density
estimate will not be concentrated on the manifold with most of
the metrics.

concentrated on the shape manifold would make the
kernel density estimate with the geodesic distance
appealing from a theoretical standpoint. However,
computing a geodesic distance in an infinite dimen-
sional manifold is a challenging problem. There is
some previous work on computing geodesic dis-
tances in the space of curves such as Minchor and
Mumford [12] and Klassen et al. [11], but there is
little work when the shape is represented by signed
distance functions.

Instead, we now consider the Parzen density
estimate with the L, distance in .

PelC) =1 3" Kl (e b)) (2)

Note that we defined ¢+ and ¢C“,- to be the signed
distance functions representing the curves C and C;
and that this constraint that ¢~ and ¢ are signed
distance functions is necessary to make this density
estimate be uniquely determined, as this equation
can give different values when ¢ and ¢ are other
level set functions representing the same curves.® In
addition, the constraint that ¢~ and ¢ are signed
distance functions enables this density estimate to
approximate the density estimate with geodesic
distance in (21), which we explain next.

Let us first consider the case where the example
shapes are of small variation. Fig. 3 illustrates this
situation. In this case, the part of the manifold
supporting the example shapes is approximately flat
or linear provided that the manifold does not have
too much curvature. This is why methods based on
PCA of signed distance functions [9,10] (hence
based on linear vector space tools), work well when
there is small shape variation.

For the Parzen density estimate in such a case, we
can take advantage of the same phenomenon,
namely that the part of the manifold supporting

SThere are infinitely many level set functions whose zero-level
sets give the same curve, and due to this redundancy the distance
between two level set functions representing two distinct shapes
can be arbitrarily small by scaling the level set functions. For
instance, let ¢, and ¢, the two signed distance functions
representing two distinct shapes C; and C,, then any scaled
versions of the signed distance functions also represent the same
shapes, and we have

dr, (W/)C1 > fld’cz) = O“[Lz((b(,‘] > ¢Cz)~

where the right-hand side can approach zero as the scaling factor
o approaches zero. Hence, the way we constrain the shape to be
represented only by the signed distance functions not only
removes the redundancy in shape representation but also makes
the distance well defined.
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Ty D

&

Fig. 3. Illustration of example shapes in & with small shape
variation.

&

Fig. 4. Illustration of example shapes in & with broad range.

example shapes is approximately flat and that the L,
distance is close to the geodesic distance. Thus, in
this case, the nonparametric density estimate with
L, distance can be a good approximation of that
with the geodesic distance.

Now consider the case where the example shapes
have a broad range as illustrated in Fig. 4. In this
case, the part of the manifold supporting the
samples is no longer flat, and PCA will not be very
effective. In contrast, the density estimate with L,
distance can still be a good approximation of (21)
for the following reasons. When ¢ and ¢4 are
close enough, the L, norm will be a good
approximation of the geodesic distance. On the
other hand, when ¢ and (f)éj are far from each
other, there will be an error in approximation of
distance, but the overall error in density estimate
will be small as long as the kernel size ¢ is small
compared to the distance sz(d)C,qB@/_). The kernel

size ¢ will be small provided that we have a
sufficiently large number of example shapes.

More precisely, we have the following approx-
imation if there exists some constant M such that
Mo is small and M is large

%Z k(dgeodesic(‘f)é’ qséi)’ 7)

:% 3

i
dry(pebe) s Mo

k(dgeodesic(¢ ol (bé‘i)’ O-)

LD

i
dr, (b espe)> Mo

M1
~ >

i
dr,($espe,)sMa

21
~ >

i
diy(bebe)<Ma

31
~ >

i
dr,($e-de)<Mo

k(dgeodesic(({bé‘a d)él-)a U)
k(dgeodesic(¢éa (bé‘i), O-)

k(dry($e de,).0)
k(dL,(p¢. de,)s0)

DY

i
dr,(bespe)>Ma

= %Zk(sz@@,(b@i), o), (23)

k(1 (bes b)), o) |

where

® We can make the approximation (2), provided that
Mo is small enough such that if dL2(¢@,¢@,)<
Mo, then dgeodesic((b@: qsé‘,—) R dL2(¢C» ('béi)'

e We can make the approximation (1) and (3),
provided that M is large enough such that if
dr, (¢, ¢Ci)>MO—’ then k(dr,(¢¢, ‘/’Ci)» o)~ 0
and k(dgeodesic(ﬁb@: (]5@’,), o) ~ 0.

These conditions can be satisfied if the kernel size o
is small enough.

A similar argument will hold for the case where
the samples form multiple clusters as illustrated in
Fig. 5, and we can make the same approximation as
Eq. (23). When the density is multi-modal, if we
knew which mode of the density the candidate shape
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Fig. 5. Illustration of two clusters of example shapes in Z and the
tangent space.

was in,® we could use a simpler approach like [10]
for shape-based segmentation. However, in scenar-
ios where that is not the case, our approach is more
powerful.

2.3.4. Relating pC(C) to pc(C)

So far we have derived a density estimate pC(C)
for an aligned candidate curve C, which is given in
terms of aligned training curves Ci,...,C,. We
remind the readers that we have all the training
curves aligned, but given an arbitrary image, the
object in that scene is not necessarily aligned with
our training set {C;}. Hence we need a density
estimate for the unaligned curves we encounter
during the curve evolution process in segmenting
that image. Here we will relate the density estimate
Ppc(C) for such an unaligned candidate curve C to
the density estimate 13@(6‘) for an aligned candidate
curve C. To this end, we first consider the relation-
ship between the two densities p@(é’) and p-(C).

Conceptually, every candidate curve C can be
described by its shape and its pose. For instance,
when C = T[p]C is aligned w.r.t. training curves
{C;}, we can interpret C as the shape of C and p as
the pose of C. Thus the probability density for the
candidate curve can be written in terms of the
density for its shape and its pose as follows:

Pe(C) < pe(C,p) (24)
= pe(Op(pl0). (25)

®For instance, one can use a classification algorithm like the
one in [19]. However, the algorithm in [19] needs to know the
number of the modes in advance, whereas our approach does not
require such information.

If the prior information about the pose p(p|C) is
available, one can use that information to evaluate
Pc(C). In this work, we assume that p(p| C) is uniform,
Le. all poses p are equally likely. In this case, all slices of
the joint density p~ p(C p) along a fixed p are identical
and simply proportional to pC(C) Hence, we have

Pc(C)=pe(C) for all p (26)

where 7 is a normalizing constant. Therefore, given the
density estimate ﬁ@(é), we can estimate the density
estimate of any candidate curve C in terms of its shape
estimate 7T[p]C as follows:

Pc(C)=pTpIO), @7
where the pose estimate p is obtained by Eq. (9).

3. Shape-based segmentation

Now we combine the nonparametric shape prior
and a data term within a Bayesian framework to
form the energy functional for segmentation. The
data term we use is from the piecewise constant
version of the Mumford—Shah functional [20], and
the shape term comes from the nonparametric shape
priors introduced in Section 2. We choose this data
term as a representative one, as it has found use in a
wide array of previous work [21,5,16]. However,
note that the shape priors can be combined with any
other data term such as the information theoretic
term proposed in [22] as well. The task of
segmentation is to minimize the energy functional.’

E(C) logp(C) (28)

4Af0)dex

+/ (I(x) — mow)? dx| — logpe(C), (29)
Rout

— logp(data|C) —

where Ri, (Rou) is the region inside (outside) the
curve C,

S &, 1(x)dx I Jroy 1) dx
—r 1. > out —— /1.
fRin dx fRout dX

and f is a hyper-parameter.

We would like to minimize this functional by
gradient descent, and the task comes down to
computing the gradient flow for the curve C. The
overall gradient flow is the sum of the two terms, one
based on data term and the other based on the shape

min =

"From now on we drop the hat for simplicity in the density
estimate p-(C) and the pose estimate p.
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prior. The gradient ﬂow for the data term is given by

0 B0~ msad + ()~ mosad IV,

(30)

where N is an outward normal of a curve. In this
section, we focus on describing how to compute the

gradient flow % for maximizing the shape term

log pc(C).

However, we cannot compute 2 S5 C directly from the
shape prior, since as was mentioned in Section 2.1,
the shape prior

log pc(C) = log(ypa(€)) (31)

1 <& S~
= log— Y k(d4(C,Cp),0) +1logy  (32)
n=

basically compares the aligned curve C = T[p]C
with the training curves {C;} and is given in terms of
those aligned curves C and {C;}. Hence, we first

compute & e ¢ from the shape prior, and then compute

% from aa?

To this end, we need a pose parameter p for curve
C at each time, and the pose p should be updated
concurrently as the curve C evolves. The updates of
C and p are performed iteratively according to
Algorithm 1.

Algorithm 1: Iterative algorithm for updating the
pose estimate p and the curve C

(1) Evolve the curve C without the shape prior for
time ¢ € [0, #9]
(2) For the curve C|,_, , compute the pose p|,—,, by
aligning C|,_,, with respect to (C})
(3) Iterate until convergence:
(a) fix p and
(i) compute C = T[p]C.

(i) compute %—f from the shape prior

logpe(C) = loglz’ 1k(d@(é C),0)
(i) compute & from & by & = 7! [p] %
(b) update C by both the data dr1ven force and
the shape driven force
(¢) fix C and
(i) compute % using the alignment energy
functional in Eq. (9)
.. 3
(ii) update the pose parameter p by 3

All the steps except step 3(a)(ii) are straightforward,
and we discuss step 3(a)(ii) in the following sections.

In following sections we discuss how to compute
the gradient flow & for maximizing the logarithm of
the shape prior probability. We first start with the
Parzen density estimate with a generic distance
metric and give a sufficient condition so that the
gradient flow is computable in Section 3.1. In
particular, as an example for which the gradient
flow is computable, we consider Parzen density
estimation with the template metric in Section 3.2.
Next, in Section 3.3, we discuss the case where the
metric is the Euclidean distance between two signed
distance functions and describe how to evolve the
curve in the direction of increasing the shape prior.

3.1. Gradient flow for the shape prior with a generic
distance metric

In this section, we derive a gradient flow for the
Parzen window shape prior with a general distance
measure. It turns out that the gradient flow is given
as a weighted average of several directions, where
the ith direction is an optimal (gradient) direction
that decreases the distance between the ith training
shape and the evolving shape.

Let us begin by considering the shape term

logpe(C) = log (1 > k(do(€. G, a)> N €5)

where dy(C,C;) is a generic distance measure
between the shape described by the curve C and
the ith training shape described by C;. Now we need
to compute a velocity field f'in curve evolution aaf
f N that increases log pC(C) most rapidly.

The time derivative of log pC(C) is given by

dlogpe(0)
ot
od
——Zk/(d(((c C)), )M (34)
pc(C)
Now suppose that the last term M is given in

the form of fc azrfN yds, ie. —C——fN de-

ot

creases d(g(C, C,) most rapidly, then we have

dlogpa(C)
o1

= — K (d.
fcpc(c) DK@ C.C).0)

<ac S N> ds (35)
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=]{ <pc(c)—2k(d,6(c ¢),0) fiN, >ds

(36)

and we have the following gradient direction that
increases log p@(é’) most rapidly

oC

— K (de(C, C; 37
5 p(c)2u< 2.0/ iN (37)

In our work, we use a Gaussian kernel k(x,o) =

\/21_2exp(— %), and we have K'(x,0)=k(x,o0)
—2). Thus the gradient flow is given by
aC 1
= = P (C)Msz(d,é(c C)),0)
xdy(C, C)(—f )N (38)

which is a linear combination of n terms {—f; N},
where the ith term contributes a force that decreases
the distance dy(C, C;) most rapidly, and the weight
for the ith term is given by k(d(C, C)), 6)d4(C, Cy).
Now the question is whether we can find a gradient
ﬂow —f; N for decreasing a distance d¢(C, Cy).

3.2. Gradient flow for the shape prior with the
template metric

As we have seen above, if we can write the term
M in the form of §~(% S > /i) ds, we have the
gradlent flow for long(C) in closed form. The
template metric is such an example, and in this
section we compute the gradient flow for the
shape prior with the template metric introduced in
Section 2.3.2.

Consider the template metric dr(C,C;) =
Area(R; 4o ¢ AR ge ¢,)- This metric can be written
in the form of region integrals as follows:

dr(C. ) = /Q (1 = H(p () H(e, () dx
+ [ H@etoxt = Hge (o)) dx
Q

= H(pe,(x) dx

Rinsidc c
+ (1 — Hpe,(x)dx, (39
Roulside ¢

where ¢ and {¢¢} are signed distance functions
for C and {C;}, respectively, and H(-) is the

Heaviside function, ie. H(¢)=1 if ¢=0 and
H(¢) =0 if ¢<0. For the region integrals in (39),
the derivative is well known [3], which is given by

C_J (C amgeon-n)as @)

ot

By substituting f; = (2H(q§@’_(s)) — 1) into (38), we
have the following gradient direction that increases
logps(C) based on the template metric most

rapidly:

oC 1
T (C)MZZk(dT(c C.0)
xdr(C,C)(1 = 2H (¢ )N. (41)

Fig. 6 illustrates the ith component of this shape
force. Note that (1 — 2H(¢¢,)) is 1 inside C; and —1
outside C;.

3.3. Approximation of the gradient flow for the shape
prior with the Euclidean distance

Now we deal with the problem of evolving the
curve C so that we increase the shape prior with the
L2 distance in (22). Since the shape prior in this case
is given in terms of signed distance functions ¢ and
qSC, we derive the evolution of the signed distance
function ¢, which is equivalent to evolution of the
curve C. When evolving ¢, it is desirable to keep
¢ to be a signed distance function in order that the
shape density estimate in (22) is meaningful density
estimate, since the L, distance d,(¢¢, ¢ ) becomes
less accurate as a shape distance measure as ¢p
moves away from the manifold of signed distance
functions. In addition, when the level set function is
off the manifold, the evolution of the zero level set
can be less stable than the case where the evolving
level set function is constrained to be a signed

C C

Fig. 6. Illustration of the shape force that decreases the template
metric dy(C, C;) = Area(Rinside cARinside ¢;)- N is the outward
unit normal vector.
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distance function [23]. With this constraint, there
are two ways to compute the evolution equations
for ¢ . One is to directly compute the gradient flow
with the constraint that ¢~ remains on the manifold
of signed distance functions. The other is to
compute gradient flow without the constraint and
then modify the evolution equation such that ¢
remains on the manifold of signed distance func-
tions. We choose the second approach here as the
first approach may not give a solution in closed
form or result in a complicated solution even if there
is a solution in closed form.

3.3.1. Unconstrained gradient flow of level set functions

Without the constraint that the evolving level set
function stays on the manifold 2, we compute the
gradient flow for logpé(é’)

~ 1
logpe(C) = log= > K(d1,(des b, o), “2)

where ¢ is the signed distance function for the ith
training shape. Note that ¢ is a function of the
time ¢ and ¢ is a shorthand notation for the
evolving level set function ¢ (7). Using a Gaussian
kernel, we have

k(dL2(¢Ca d)é‘i)) o)
1 1 )
Vo e"p(‘ 27 /Q(%(x) — ¢, () dx).
43)

By differentiating the above expression, we have

0
&k(dq((b@ ¢Ci)’ G)
= k(d1y(ber b, 0)

1 0
|- 5ms [ 260600 - b T ]

— ke de ) de,~ 00 ). @

Let us now differentiate log p@(é) in (42).

0 ~
5, logre(C) = %fzatk(dmmc) ,0) (45)
1
p (C) 2nzk(dL2(¢C7¢C) O')
0
(e, 6. 5C) (46)

- <p icw > ke e).o)

a
<(de, — do). ¢C> @)

Thus the gradient direction that increases log p@(C')
most rapidly is

Be _ |

ot _P (C) 2nzk(dL2(¢caq5C J)((/)c (b@)

(48)

This velocity field is given by a weighted average of
{pe, — dehiny, where ¢p — ¢ is the direction
toward the ith training shape qSC, and the corre-
sponding weight is k(dr,(¢ ¢, qSC) a) Note that the
weight for the velocity component ¢¢ — e in-
creases as ¢ gets closer to (/)C As a result, an
example shape that is closer to ‘the current shape
becomes more important during the evolution of the
shape.

3.3.2. Modifying the evolution equation

Now we describe how we modify the evolution
Eq. (48) such that the evolving level set function
remains a signed distance function. We start by
rewriting the update Eq. (48) and defining the
velocity field v(-) as follows:

0 (x, 1)
ot
1
(cm)az Z k(dry(de( 1), ¢, 0)
< (e, (¥) = delx, )2 u(x), (49)

where we introduce pixel x and time ¢ explicitly to
the velocity field expression.

Now we modify the evolution in (49) and
construct a new velocity field vpey(-) which guaran-
tees that the evolving level set function is a signed
distance function. The goal here is to extract
relevant information for shape evolution from the
velocity field v(-) and to construct vyey(+) such that
the resulting trajectory of ¢(-, ?) is on the space Z.

First we observe that the only components of the
velocity field o(-) that directly impact the shape
evolution are those defined at the points on the
boundary C(7) = {xl$pe(x, 1) = 0}. In this respect,
we take vnew(x) = v(x) if x e C. The next key
property is that as long as the velocity vpey remains
constant along the direction normal to the curve C,
the evolving level set function ¢x(f) remains a
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signed distance function [24]. Since we have defined
values of vpew(+) at all the boundary points, we can
extend these values in the direction normal to the
boundary. Such a procedure is equivalent to setting
the velocity vhew(x) at a point x to be equal to the
boundary velocity v(xz), where x is the boundary
point closest to the point x.

In summary, we update the level set function ¢
by the modified velocity vyey(+) as follows:

O0pe(x, 1)
ot

where x; is the point on the curve closest to the
point x.

This vpew(-) is an approximation of the gradient
flow which maximizes the change in the energy.

= Unew(X) = 0(x¢), (50)

3.4. Discussion on the gradient flows

In this section, we consider the gradient flow
induced by the shape prior with the L, distance and
compare that with the shape constraint obtained by
the PCA-based approach in [10]. Then we add some
comments about the gradient flow induced by the
shape prior with the template metric.

Let us consider the shape force due to L, norm in
(48). Such shape force will evolve the curve toward a
shape at local maximum of the shape prior, which is
approximately a weighted average of the neighbor-
ing training shapes. Although the actual shape force
is modified version (Section 3.3.2) of Eq. (48), this
equation gives a useful interpretation of a shape at a
local maximum of the shape prior as follows. At the
local maximum of p@(é), the gradient flow will be
Zero.

ag% = @%kaw@ be).0)be, — d¢)
(51)
= %ZZLZ(% be)be, — be) (52)
—o (53)

kdp, (st e )-0)

where iLz(d)@,qSCi)z and ) AL, (d¢,

npe(C)
qsa) = 1. Hence, the shape at the local maximum is
given as
be =D i1s($es ), (54)

At first sight, this is a linear combination of training
shapes, hence one can raise an issue that this approach

might have the same problem that PCA-based
approaches have, namely, the space of signed distance
functions is not linear and such linear combination
would be far off the manifold. However, the linear
combination has nonlinear  weight function
A1, (¢ ¢, ¢¢,) that emphasizes only the training samples
within a local neighborhood of the current candidate
shape ¢, which we explain below. The weight function
is a decreasing function of the distance dp,(¢¢, de).
and in particular, the weight function A,(¢ ¢, ¢ ) will
be negligible if ¢ is not in the local neighborhood (or
within the same mode) of ¢4 (i.e. dr,(¢ ¢, qﬁé’_) is large
enough compared to the kernel size ¢). Thus the shape
at the local maximum is approximately given as a
weighted average of training shapes in local neighbor-
hood. Note that the weight function behaves as a
selection function of the local neighbors or samples in
the same cluster (or in the same mode). Therefore, the
linear combination in (54) is not far away from the
manifold. We can also say that only locally relevant
shapes are activated by the shape prior and the shape
force. In addition, this property gets stronger as the
kernel size gets smaller, i.e. the neighboring samples
contributing to the shape at the local maximum are
more localized, thus the part of the manifold that
supports such neighboring samples will be more linear
or flat.

In contrast, the PCA-based approach in [10], the
candidate shape is constrained to be a linear
combination of training samples, yet without a
special selection mechanism. In particular, the shape
of the segmentation is constrained to be sum of the
average shape and a linear combination of eigen-
shapes as follows:

k
P10 = P + Y HilPeig i (55)
i=1

where the eigen-shapes {¢.;, ;} are obtained by PCA,
and according to the algorithm, each of the eigen-
shapes is again a linear combination of training
shapes. Hence, any candidate shape ¢(o, ..., o) is
a linear combination of the training shapes, and the
set of possible candidate shapes is contained in the
linear subspace spanned by all the training shapes:

{d(oq,...,00)} C span{qﬁél,...,d)@n}. (56)

When the training shapes are localized, the right-
hand side of (56) would be also localized around
the shape manifold (space of signed distance
functions) thereby making the set of candidate
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shapes localized, too. However, when the training
shapes are multi-modal or broadly distributed, a
candidate shape ¢(ay, ..., o) is likely to be a linear
combination of broadly distributed samples. This
increases the chance of such a candidate shape being
off the manifold and also being a less typical shape.
In other words, the shape constraint obtained by
PCA analysis can be not restrictive enough when the
training samples are broadly distributed.

Finally, we briefly compare the gradient flow for
the density estimate with L, distance and the one for
the density estimate with the template metric. Let us
consider the gradient flow equation (41)

@ 1
o pe (C)” 7
xdr(C, C)(1

1 s = o
= 5> (G, Cdr(C, C)1 — 2H($ )N,

Zk(dT(C C).0)

—2H($¢ )N (57)

(58)
where Ar(C, C;) _M and 32, ir(C,C) = 1.

This gradlent flow also has a nonlinear weighting
function AT(C, C;), which selects training shapes in a
local neighborhood of the current segmenting
shape. The major differences between the two
gradient flows are in the flexibility or the degree of
the freedom. In particular, the ith component
dr(C,Ci)(1 = 2H(¢¢ )N of the gradient flow with
the template metric has uniform magnitude
dr(C,C;) over the entire curve with (1 — 2H(¢¢,)
changing only signs. As each component of the
gradient flow has pretty simple structure, the overall
gradient flow in (58), which is a linear combination
of simple component flows, will still have less degree
of the freedom than the gradient flow in the case of
L, distance. As the shape prior proposed in [16] is
also based on the template metric, the gradient flow

therein has the same property that it has limited
degree of freedom.

4. Experimental results

Now we present experimental results demonstrat-
ing our segmentation method based on nonpara-
metric shape priors. We first show results for
segmenting occluded objects. Here the shape prior
involves a single class of object shapes. Next, we
present experimental results on the problem of
segmenting hand-written digits (with low quality or
missing data), where the prior density involves all
digits, and the algorithm does not know which digit
the test data is. This problem is more challenging as
the prior density is now multimodal.

4.1. Segmentation of occluded objects with various
poses

In this section, we demonstrate our shape-based
segmentation algorithm with the segmentation of
synthetic aircraft images. As example shapes of this
class, we have a set of 11 binary images displayed in
Fig. 7, whose boundaries provide the training curves

Fig. 9. Overlay of training samples of the aircraft shape: (a)
before alignment: (b) after alignment. The images (a) and (b) are
generated by taking an average of the binary images in Figs. 7
and 8, respectively.

BHEOANNNRANnn

Fig. 7. Training samples of the aircraft shape before alignment.

+lld]a]e]ifale]i]e]s

Fig. 8. Aligned training samples of the aircraft shape.
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Fig. 10. Segmentation of an occluded aircraft image (rotated) using Parzen shape prior with L, distance between signed distance
functions. The first row, (a)—(e), shows the evolution of the curve C on top of the occluded image. The second row, (f)—(), shows the
aligned curve C on top of the image shown in Fig. 9(b).

Ci,...,C, (n=11). Fig. 8 shows the training
shapes after alignment, hence the boundaries of
these binary images correspond to the aligned
training curves C1, ..., C,. Fig. 9(a) and (b) contain
overlaid images of the training samples, showing the
amount of overlap among training shapes before
and after alignment, respectively, and providing a
picture of the shape variability.

We now present segmentation results on the
image of an aircraft whose shape was not included
in the training set. In particular, Fig. 10 shows the
noisy aircraft test image with an occluded left wing
as well as its segmentation using the Parzen shape
prior with L, distance between signed distance
functions. The first row, (a)—(e), shows the evolving
curve C on top of the image to be segmented, and
the second row, (f)—(j), shows the transformed curve
C = T[p]C on top of the aligned training shapes
shown in Fig. 9(b). In our shape-based segmenta-
tion, we evolve the curve as is given in Algorithm 1.
First, the curve evolves without the shape prior
(using a curve length regularization term instead) as
shown in (a)—(c), which corresponds to the step 1 of
Algorithm 1. After the curve finds all the portions of
the object boundary except those occluded as shown
in (c),® the shape force is turned on, and both the
data force and shape force are applied during the
stages (c)—(¢). Note that the pose parameter p is

At stage (c), the curve has converged with the data force and
the curve shortening term. Such convergence is detected
automatically and then the shape force is turned on.

updated as is shown in (i) and (j) while the curve
evolves as in (d) and (e). This procedure is more
desirable than turning on the shape force from the
start, since during the initial stages of the curve
evolution, the pose estimate may not be accurate
and in that case the shape force might deform the
curve with an inaccurate pose estimate. Note that
while the shape force is turned off, we need no pose
estimates and we have C = C. We also note that our
algorithm does not have access to any information
about which parts of the image contain occlusions.
At the final segmentation the shape force and data
force are in equilibrium. For instance the data force
at the boundary of the left wing will try to shrink the
left wing to match the given data, whereas the shape
force tries to expand the left wing to increase the
fidelity to the shape prior.

In these experiments, we have an issue of how to
balance the data force and the shape force. We
balance the two forces by subjectively (depending
on the SNR of the images) choosing the hyper-
parameter f in the data driven energy term (29). A
rule of thumb is that the higher the noise variance
the smaller the data force parameter f.

Fig. 11 shows the results with the same test image
with a different shape prior, namely the density
estimate with the template metric. As the inter-
mediate steps of the curve evolution are similar to
Figs. 10 and 11 for the test images with other poses,
in the remainder of this section, we present only
the final segmentation results for the aircraft
images. Fig. 12(a) is the same image as the one
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Fig. 11. Segmentation of an occluded aircraft image (rotated) using Parzen shape prior with the template metric. The first row, (a)—(e),
shows the evolution of the curve C on top of the occluded image. The second row, (f)—(j), shows the aligned curve C on top of the image

shown in Fig. 9(b).

Fig. 12. Segmentation of an occluded aircraft image involving rotation: (a) test image; (b) result without shape prior; (c) nonparametric
shape prior with the L, distance; (d) nonparametric shape prior with the template metric.

Fig. 13. Segmentation of an occluded aircraft image involving rotation, scaling, and translation: (a) test image; (b) result without shape
prior; (c) nonparametric shape prior with the L, distance; (d) nonparametric shape prior with the template metric.

shown in Fig. 10, and we present the segmentation
result without a shape prior (and with a curve length
penalty instead) and the segmentation results
obtained by two different shape priors, namely the
nonparametric shape prior with the L, distance and
the nonparametric shape prior with the template
metric. Fig. 13 shows a segmentation example
involving a rotated, scaled and translated version
of the same object.

In these experiments, the nonparametric shape
prior with the L, distance leads to better segmenta-
tion results than the template metric, especially at
the front end of the aircraft. This difference seems to
come from the nature of gradient flow we discussed
in Section 3.4, namely whether the component
shape force is variable or constant around the
curve, which we explain now. We examine the
segmentation result in Fig. 12(c) and the inaccurate
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segmentation around the front end of the aircraft in
Fig. 12(d) by first inspecting the aligned curve C and
the aligned training curves in Figs. 10(j) and 11(j).
Figs. 10(j) and 11(j) show that the front end portion of
the aligned segmenting curve C is outside of the same
portion of training shapes. As a result, the shape force
will be in a direction to shrink the front end further
inside to match the training shapes. The issue is then
how large the magnitude of such shape force is relative
to the magnitude of the data force. With the L,
distance, when a portion of the segmenting curve gets
near to the same portion of the aligned training curves,
the shape force around that portion of the boundary
decreases. For instance, in Fig. 10(e), the shape force
around the front end will be much smaller than that
around the left wing. This variability of shape force
around the boundary explains why the front end does
not shrink further with the L, distance. In contrast, the
shape force due to the template metric is controlled by
only whether the portion of the boundary is inside or
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outside the training shape without further adjusting its
magnitude. As a result, with the alignment shown in
Fig. 11(j), the shape force will try to move the portion
of the curve around the front end further inside even
though that portion of the boundary is pretty close to
the same portion of the training shapes.

In all of these examples, we have reasonable
segmentation despite the occlusions. These results
demonstrate that our segmentation algorithm can
locate an object with an arbitrary pose, when we
have prior knowledge about the shape of the object.
Since the training shapes are locally distributed, the
method based on linear shape prior such as PCA
will also work for these images as demonstrated by
the work of Tsai et al. [10].

4.2. Segmentation of handwritten digit images

We now consider the problem of segmenting
handwritten digits, where there are 10 handwritten
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Fig. 14. Training data for handwritten digits; Courtesy of Erik Learned—Miller
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digits, i.e. 0,1,...,9. As the prior density is now
multimodal, this is a scenario which cannot be
readily handled by most existing shape-based
segmentation techniques. We use a training set of
100 sample images with 10 segmented images of
each digit as shown in Fig. 14. In this experiment,
the training shapes and test shapes are already
aligned, so we fix the pose parameters p; for the
training curves and the pose parameter p for
the evolving curve to be [0 0 0 1], the one for the
identity transform. Hence C; = C;and C = C, and
we just use C; and C to denote aligned curves.

Let us consider the low-SNR test images (not
included in the training set) in Fig. 15(a). Segmenta-
tions without a shape prior (and with a curve length

penalty instead) are shown in Fig. 15(b). The results
of our shape-based segmentation method together
with the results of PCA-based segmentation method
of Tsai et al. [10] are shown in Fig. 16. The result of
PCA-based segmentation in Fig. 16(a) looks better
than the result without a shape prior in Fig. 15(b) as
the shape prior constrains the evolving curve to be a
linear combination of training shapes, i.e. to remain
on the linear subspace spanned by the training
shapes. However, as the training shapes are
distributed broadly having multiple modes, such a
linear subspace is not restrictive enough to obtain
very good segmentation results. In contrast, the
results of our shape-based segmentation look much
better as shown in Figs. 16(b) and 16(c). This

Fig. 15. Segmentation of low SNR digit images: (a) test images; (b) without shape prior.
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Fig. 16. Segmentation of low SNR digit images: (a) with linear prior (PCA); (b) nonparametric prior with the L, distance; (c)
nonparametric prior with the template metric.

demonstrates that the nonparametric shape prior In kernel density estimation, choice of kernel size
can effectively model the shape distribution com- is an open issue and its choice depends on the
posed of multiple clusters. application at hand [17]. In general, there is a
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..

Fig. 17. Handwritten digits with missing data; each of these examples is not included in the training set in Fig. 14. The parts of missing

data are displayed in gray.

tradeoff in choosing kernel size, namely if we choose
it too small, the density estimate is dominated by the
nearest training shape, whereas if we choose it too
large, density estimate is over-smoothed across
clusters. Our choice of kernel size for this data
set 1S 0 = domL, a scaled version of the ML kernel
size, which can be automatically estimated from
the data, and the scale parameter ¢ is manually’
chosen to be 0.2 in this application, in order to
prevent over-smoothing across multiple clusters of
samples.

Finally, we consider the problem of segmenting a
handwritten digit image with missing data as well as
additive noise. The gray region in Fig. 17 indicates
where we do not have observations, and the test
images are shown in Fig. 18(a). In this experiment,
we assume that the algorithm knows which pixels
are missing, that is the algorithm takes the occlusion
mask as an additional input, and disregards the
intensities of the pixels that fall under the mask.
Since the curve evolution inside the region of
missing data will not change the data-based energy
term, the data driven force in that region would be
zero. Hence, when we evolve the curve, the portion
of the curve in the region of missing data will be
evolved only by shape force whereas the other
portion of the curve will be evolved by both the data
force and the shape force.

"We can fix this scaling parameter and use one-fifth of the ML
kernel size as a rule of thumb kernel size. This rule of thumb
kernel size is automatically computed from the data.

Segmentations without a shape prior are shown in
Fig. 18(b). Again the result of PCA-based segmentation
in Fig. 19(a) looks better than the result without a
shape prior in Fig. 18(b). However, we can see that the
PCA-based shape prior is not restrictive enough as
shown in the segmentation results of digits 1, 7, and 9.
In contrast, our shape-based segmentation results in
Fig. 19(b) and (c) provide fairly accurate segmentation
despite the data limitations. We can also compare the
segmentation results in Fig. 19 quantitatively by
measuring the mismatch between the ground truth
boundary Cye and the segmentation result Cregyi. We
use the template metric d1(Ciye, Cresuit) as such a
measure of mismatch and provide the quantitative
comparison in Table 1 and Fig. 20. In Table 1, for each
digit image, we mark in boldface the minimum
d1(Clye, Cresurt) Over the three priors, where we can
see that the shape prior with the template metric
performed best most frequently and that PCA-based
shape prior never performed best. Fig. 20 visualizes
Table 1 and shows that most times the nonparametric
shape priors give smaller error measures than PCA-
based shape prior. In summary, we conclude that
segmentation methods based on nonparametric shape
priors outperform PCA-based segmentation method
both qualitatively and quantitatively.

5. Conclusions
We have considered the problem of estimating

shape prior densities from example shapes and
proposed a shape-based segmentation method. In
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Fig. 18. Segmentation of digit images with missing data: (a) test images; (b) without shape prior.

particular, we have developed a framework for
estimating shape priors from training shapes non-
parametrically. Based on such nonparametric shape
priors, we have formulated the shape-based seg-
mentation problem as a MAP estimation problem.
Evaluation of the nonparametric shape prior for a
candidate curve for segmentation is given in terms
of distances between the candidate curve and the
training curves. We consider the L, distance
between signed distance functions for shape density
estimation, in addition to a distance measure based
on the template metric. In particular, we consider
the case in which the space of shapes is represented
as a space of signed distance functions, which we

interpret as a manifold embedded in a Hilbert space.
We have derived curve evolution equations based
on the nonparametric shape priors and provided
comparison of the curve evolution equations for the
two distance metrics. We have presented experi-
mental results of segmenting partially occluded
images, where the similarity transform of the object
was handled by alignment. We have considered the
case in which the training shapes form multiple
clusters, and demonstrated that our nonparametric
shape priors model such shape distributions success-
fully without requiring prior knowledge on the
number of clusters. Though we considered the
template metric and the L, distance between signed
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Fig. 19. Segmentation of digit images with missing data: (a) with linear prior (PCA); (b) nonparametric prior with the L, distance; (c)
nonparametric prior with the template metric.

distance functions, other metrics can also be used differentiable approximation introduced in [13],
for nonparametric shape priors in our framework. whose use for shape density estimation deserves
One such example is the Hausdorff metric [18] or its some future work.
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Table 1
Quantitative comparison of the segmentation results in Fig. 19

Digit 01 2 3 4 5 6 7 8 9
PCA 188 76 288 196 153 201 158 200 326 330
Prior with d;, 106 33 222 144 191 193 101 120 302 108
Prior with dr 122 55 205 137 129 165 89 140 293 105

Each element of the table is given by the template metric
d1(Cirue, Cresult), Which is a distance between the ground truth
boundary curve Cyy. and the segmentation boundary Cregy of
the corresponding segmentation result.

350 T T T T T r r T
- PCA ST
300 | ) / g
in - Template /
250

200

distance

150

100

50

digit

Fig. 20. Quantitative comparison of the segmentation results in
Fig. 19. The template metric d1(Cirye, Cresuit) is used as a measure
of mismatch between the ground truth and the segmentation
result. This figure is obtained from Table 1.
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